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An equation of Rabinowitsch–Mooney type has been suggested for approximate calculation of pressure
drop in flow of generalized Newtonian fluid through channels with insert both in the region of creep-
ing flow and at higher values of the Reynolds number, and this calculation method has been verified
for four types of insert using own numerical solution and experimental results as well as literature
data.

In practice, the calculation of flow of fluids through closed channels often encounters
the problem of calculation of pressure drop in flow of generalized Newtonian fluid
(GNF) through direct channels with insert. Channels with insert serve for heat transfer
between two fluids (e.g., the heat exchanger of the tube-in-tube type), for intensifica-
tion of heat transfer through the channel wall, or for mixing of fluids (static mixers).

Practically advantageous for calculation of pressure drop of channel are the Rabino-
witsch–Mooney type equations which, using the most easily accessible solution for a
Newtonian fluid (NF), enable also solution of the problem of calculation of pressure
drop of an analogous flow of GNF. Their application is conditional on a satisfactory
fulfilment of presumption of approximate agreement between the stress distribution in
the flows of NF and GNF at the same value of pressure gradient, this agreement being
exact for the channels of the simplest geometry (tube and planar slot).

The aim of the present work is to verify the applicability of the Rabinowitsch–
Mooney type equation suggested in ref.1 for the purposes of approximate calculation of
pressure drop in creeping flow of GNF through channels of noncircular cross section
without insert as well as for calculations of pressure drop in channels with insert even
for higher values of the Reynolds number when the effect of inertial forces becomes
significant during the flow.
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THEORETICAL

The Rabinowitsch–Mooney type equation suggested in ref.1 for the purposes of ap-
proximate calculation of pressure drop during flow through direct channels of noncir-
cular cross section without insert reads as follows:

D
.

w ≡ (3 − Ω)uch/lch = [(3 + Ω)/τw
(2 + Ω)] ∫ 

0

τw

τ(1 + Ω) D
.
(τ) dτ (1)

τw = ∆plch/L (2)

uch = V
.
/S  , (3)

where D
.

w means the kinematic consistency variable, τw means the dynamic consistency
variable (Eq. (2)), uch is the characteristic (mean) velocity (Eq. (3)), lch is the charac-
teristic linear dimension of system which is presumed to be independent of the flow
properties of GNF, and D

.
(τ) is the dependence of deformation rate D

.
 on shear stress τ

given by the general flow curve of GNF or by the respective flow model.
The dimensionless characteristic Ω of channel was expressed by relation1

Ω = (rh/rp)2  , (4)

where rh = S/O is hydraulic radius, S is cross section of channel, O is its wetted peri-
meter, and rp = (S/4π)0.5 is the cross-sectional radius which is equal to the hydraulic
radius of a tube of the same cross section S as has the channel considered.

Equation (1) is exactly valid for a tube of circular cross section (lch = rh ≡ D/4; rh = rp;
Ω = 1) and for a planar slot (lch = rh ≡ h/2; rp → ∞; Ω = 0).

For a Newtonian fluid (D
.

(τ) = τ/µ, where µ is the dynamic viscosity), integration of
Eq. (1) results in relation (5), whereas for a power-law fluid (D

.
(τ) = (τ/K)1/n, where K

and n are parameters of the model) it results in relation (6).

τw ≡ ∆plch/L = (3 − Ω)µuch/lch (5)

τw ≡ ∆plch/L = K[(3 − Ω)(2 + Ω + 1/n)/(3 + Ω)]n(uch/lch)n (6)
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Furthermore, in ref.1 it was proved that application of more complex flow models to
the case analyzed is unnecessary provided the parameters of power law flow model
have been determined in the interval of shear stress τ or deformation rate D

.
 which

correspond to the values of consistency variable τw or D
.

w attained during the flow
through the channel given.

The pressure drop in the flow of GNF through a channel of noncircular cross section
is determined from Eq. (6) using the characteristic linear dimension lch determined from
the known solution for NF using Eq. (5) where the characteristic Ω is obtained from the
channel geometry with the help of Eq. (4).

If Eqs (1) or (6) should be used for (even approximate) calculation of pressure drop
in channels with insert, the quantities uch, lch, and Ω, necessary for the calculation, must
be modified in the corresponding way. This is simple for such direct channels with
inserts where neither the flowed-through cross section Sc nor the wetted perimeter O are
significantly changed along the channel length.

For the channels with inserts of the above-mentioned type, which are considered in
the present paper, it is

uch ≡ V
.
/Sc = V

.
/(Sεs)  , (7)

where S is the channel cross section with incorporated insert and

εs = Sc/S (8)

is “surface” porosity of the channel-insert system. The value of “surface” porosity of
the channel-insert system considered, which is denoted as ε below, is identical with the
value of volume porosity,

εv = Vc/V = ScL/(S L) (9)

which can be made use of advantageously in its experimental determination.
From the geometry of flowed-through cross section it is also possible to obtain the

values of hydraulic radius (rh = Sε/O) and cross-sectional radius (rp = (Sε/4π)0.5) which
are needed in calculation of Ω characteristic of channel with insert:

Ω = 4πSε/O2  . (4a)

1478 Dolejs, Dolecek, Machac, Siska:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



The characteristic linear dimension lch of channel-insert system is determined on the
basis of known values of pressure drop ∆p from Eq. (5), the pressure drop ∆p, more-
over, being involved in the momentum balance of fluid flowing through channel with
insert in which the force effect of solid surface on fluid is expressed (like in immobile
layer of particles2) as a sum of frictional and shape resistances.

On the basis of comparison of Eq. (5) with the momentum balance mentioned it can
be expected that the ratio between the characteristic linear dimension lch and the usually
adopted hydraulic diameter Dh = 4rh of channel without insert (ε = 1) can be expressed
as

lch/Dh = f(ψ,Π1,Π2,…)  , (10)

where ψ is the ratio of shape and frictional resistances of channel with insert and Π1,
Π2,…are simplexes of geometrical similarity of channel-insert system. The quantity ψ,
which is considered independent of flow properties of GNF, has a constant value in the
creeping flow region, its value being a function of the Reynolds number in the region
of manifestation of inertial forces.

For a channel with insert of a given geometry (Π1, Π2, … = const.), the criterion
dependence (10) can be replaced by Eq. (11), where ReM is the Reynolds number of
Rabinowitsch–Mooney type introduced into the treatment of momentum2 by Eq. (12) in
which ρ is density of the fluid.

lch/Dh = f(ReM) (11)

ReM = ρuch
2 /τw (12)

The advantage of the Reynolds number defined in this way lies in its generality.
With regard to validity of Eq. (1) for the flow of GNF, this criterion will assume ap-
proximately the same values independent of the GNF flow model used.

For a power-law fluid, introduction of τw from (6) into (12) will give the Reynolds
number in the form:

ReM = [(3 − Ω)(2 + Ω + 1/n)/(3 + Ω)]−n ρuch
(2 − n) lch

n /K (13)

which is also valid for a Newtonian fluid for n = 1 and K = µ.

Generalized Newtonian Fluid 1479

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



However, this expression has a drawback in that it involves the linear dimension lch

looked for. Therefore, for the purposes of calculation of pressure drop of channels with
insert, the Reynolds number will be introduced by the relation

Re = (Dh/lch)ReM (14)

which for a power-law fluid assumes the form

Re = [(3 − Ω)(2 + Ω + 1/n)/(3 + Ω)]−n ρuch
(2 − n) lch

(n − 1) Dh/K (15)

not any more involving the lch variable in the case of NF (n = 1), which simplifies the
determination of concrete form of dependence (11) with the use of Eq. (5).

When calculating the pressure drop of power-law fluid, however, it is necessary to
determine the lch value with the help of Eqs (11) and (14) by the method of gradual
approximations. For the first approximation, one may choose the Re value at the limit
of creeping flow region (Dh/lch = const.).

RESULTS AND DISCUSSION

In order to verify the suitability of the suggested way of calculation of pressure drop,
we used the results of numerical solution for a tube with screw-shaped insert3, ex-
perimental results for a channel with the cross section of annulus with double screw-
shaped insert4, experimental results in the creeping flow region for a tube with
screw-shaped inserts5, and results of numerical treatment for a channel with an insert of
tube-in-tube type with the cross section of annulus6.

The agreement between the pressure drop values ∆pcalc calculated by the procedure
given in Theoretical and the ∆p values determined by some of the above-given proce-
dures was evaluated according to the magnitude of mean quadratic deviation

δ = [1/N ∑ 
i = 1

N

δi
2]1/2  , (16)

where the per cent relative deviation δi is given as

δi = (∆p/∆pcalc − 1) . 100%  . (17)
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For the channel with screw-shaped insert (Fig. 1) we found at first the value of
channel characteristic Ω given by Eq. (4a). As the insert divides the channel into two
half-round parts with the same pressure drops, it is sufficient to consider only the flow
in one of the two symmetrical parts of the channel. For the geometry considered in the
numerical treatment3 s = 0, ε = 1, S = πD2/8, and O = πD/2 + D we obtain the value
Ω = 0.747.

From the results of numerical treatment3 for the flow of NF through the channel with
this insert for the values of simplex D/Le = 0.212, 0.260, 0.339, and 0.438, where D is
inner diameter of tube and Le is the length corresponding to rotation of thread of the
screw insert by 180°, inclusive of the results for the channel of half-round cross section
(D/Le = 0), we obtained the dependence in the following form

Dh/lch = 6.13 + 2.89 (D/Le)2.02 + 0.0298 (D/Le)1.27 Re  . (18)

The procedure of determining the dependence (18) with the help of data of pressure
drop ∆p/L and the Reynolds number ReN = Duchρ/µ tabulated in ref.3 for the flow of
Newtonian fluid through screw-shaped inserts characterized by the above-given values
of simplex D/Le was as follows: First, the tabulated values of ReN number were recalcu-
lated with the use of the definition equation (15), where n = 1 and K = µ, to the values
of Re number. Then on the basis of Eq. (5), the values lch and thereafter the values
Dh/lch were determined for the corresponding ∆p/L data. Thus, altogether 46 triads of
Dh/lch, D/Le, Re data were available which were used for gradual construction of the
dependence (18) with the help of linear regression. The validity of Eq. (18) is limited
by the conditions Re ≤ Remax and Dh/lch ≤ (Dh/lch)max which approximately delimit the
region of stability of the numerical method used3. The values Remax, (Dh/lch)max, and the

Le

øD

s

FIG. 1
Channel geometry of circular cross section with continuous insert
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critical values Recr delimiting the creeping flow region (Dh/lch = const.) are given in Table
I for the individual inserts.

The magnitude of δi deviations of the pressure drops ∆p determined numerically
from the ∆pcalc values calculated from Eq. (5) with the use of Eq. (18) varied from
–6.1% to 6.8%, the mean deviation δ given by Eq. (16) being 1.5%.

Next, for the values of flow index n = 0.9, 0.8, 0.7, 0.6, and 0.5, using Eq. (18) and
the method of gradual approximation mentioned in Theoretical, we determined the
values of pressure drop ∆pcalc which were then compared with the corresponding values
of numerical treatment3. Altogether 10 data were compared in the creeping flow region
and 206 pressure drop data in the transition region.

A very good agreement was found with the compared values of pressure drop in the
creeping flow region (Dh/lch = const., Re ≤ Recr). The maximum value of relative devi-
ation δi in this region, which corresponds to the flow index value n = 0.5 for a channel
with the highest extent of vortex design of insert (D/Le = 0.438) was only 1.5%.

With the channel of the same geometry with the ratio of D/Le = 0.438 for the same
flow index n = 0.5, we also found the absolutely highest value of deviation δi = –17.3%,
namely for the maximum value of the Reynolds number Remax = 532. In this case, of
course, the value of pressure drop ∆p determined at the limit of stability of numerical
treatment can be loaded with a larger error of numerical method and, beside that, the
calculated value of Dh/lch = 12.3 already exceeds the value 9.9 which delimits the va-
lidity of Eq. (18). For all the 206 data compared in the region of significant effect of
Reynolds number, the mean deviation δ had the value of 3.9%. Hence, for the channel
of the geometry considered, the calculation method of pressure drop suggested agrees
well with the numerical treatment.

In order to verify the applicability of the suggested way of calculation of pressure
drop we also used the experimental results for a channel of circular cross section with
double screw-shaped insert4 (Fig. 2). The insert is composed of two screw-arranged flat
stripes with opposite direction of lead. The inner stripe of the height h1 is firmly wound

TABLE I
Characteristics of channels with continuous screw-shaped insert (Fig. 1)

D/Le (Dh/lch)max Remax Recr

0.212 11.0 1 097  0.60

0.260 8.9 488 0.62

0.339 9.9 502 0.63

0.438 9.9 323 0.64
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on a tube or rod of diameter d coaxial with the channel. The outer stripe of the height
h2 is wound on the inner stripe and touches the inner wall of channel. The heights of
stripes h1 = (d1 – d)/2 and h2 = (D – d1)/2 are chosen so as to obtain the same magni-
tudes of the areas of annuli (limited by the circles with diameters d, d1 and D in Fig. 3)
corresponding to the projections of screw-arranged stripes on the channel cross section.
The contact points of the two stripes lie on two straight lines parallel with the channel
axis.

Three types of insert were used whose geometrical characteristics (the ratio d/D of
diameters of the outer and inner tubes, the ratio D/Le of diameter of outer tube and
distance of insert screw, and porosity of insert ε (determined by measuring the volumes V
and Vc)

4) are given in Table II.
Increasing complexity of the insert geometry increases also the difficulties connected

with determination of value of the channel characteristic Ω. If the porosity of insert ε is
determined experimentally, the magnitude Sc of the flowed-through cross section

øD

ød

d1

s

FIG. 3
Cross section of channel with double screw-
shaped insert in Fig. 2

Le

øDød

FIG. 2
Channel geometry of annular cross section with double screw-shaped insert
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(which is needed for calculation of velocity uch) is simply obtained from Eq. (8) with
the corresponding accuracy. On the other hand, the determination of wetted perimeter
O of the channel is more difficult and may be accompanied by a larger error, which will
then result in lowered accuracy of calculation of Ω characteristic according to Eq. (4a).

However, the accuracy of suggested way of calculation of pressure drop is not much
affected by the error in determination of numerical value of Ω characteristic. For in-
stance, in the discussed case of channel with screw-shaped insert (Fig. 1) with the
characteristics s = 0 and D/Le = 0.438, the deviation of pressure drop from the numeri-
cal treatment is 1.5% in the creeping flow region for the flow index value n = 0.5. If the
correct value of Ω = 0.747 in Eqs (5) and (6) is replaced by, e.g., Ω = 0.5, the magni-
tude of this deviation will change from 1.5% to 2.1% only.

The geometry of cross section of channel with double screw-shaped insert with a half
distance between two neighbouring contact points of the two stripes on the straight line
is depicted in Fig. 3. For this cross section geometry, the magnitude of wetted perimeter
can be determined from the relation:

O = π(D + d) + D − d  . (19)

The relation given can be used for any cross section except for those at the points of
crossing of the stripes where the wetted perimeter is smaller. Obviously, the require-
ment of constant value of channel perimeter is fulfilled only partially with this insert.

TABLE II
Characteristics and experimental results for annulus with double screw-shaped insert (Fig. 2)

 Insert 1 2 3

 Dh = D, mm 40    40    40    

 d/D  0.130  0.156  0.204

 D/Le 2.78 1.68 1.35

 ε  0.851  0.864  0.852

 Ω  0.430  0.426  0.401

 A 36.1  19.9  16.2  

 B 13.5  7.5 5.0 

 X 0.39 0.36 0.40

 Y 6   6   6   

 δNF, % (N = 20) 2.0 2.2 2.3 

 δGNF, % (N = 25) 5.0 12.3  6.3 
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The values of Ω characteristic of the individual inserts calculated with application of
the experimental porosity value and Eqs (4a) and (19) are given in Table II.

The further treatment of experimental data of pressure drop for NF in ref.4 was simi-
lar to that given above with the only difference that, with regard to a larger number of
dimensionless geometrical characteristics in the insert of this type, an individual rela-
tion of general form (20) was determined for each insert type,

Dh/lch = [AY + (B ReX)Y]1/Y  ,    for Re < 70 (20)

and the numerical values of coefficients A, B, X, Y obtained from experimental data by
optimization are given in Table II for the individual types of inserts. For NNF = 20
experiments with NF, with each individual insert, the mean deviation δ of experimental
values of pressure drop from the values calculated with the use of Eqs (20) and (5)
varied from 2.0% to 2.3% (see Table II).

The experimental results with NF and GNF (NGNF = 25 for each individual insert) are
given in Fig. 4 for the flow index range 0.47 < n < 0.59 and for Re > 0.8. From Fig. 4
it can be seen that, in contrast to the numerical treatment of flow of GNF through the
screw-shaped insert given in Fig. 1, the agreement of experimental results with GNF is
better in the region of manifestation of the Reynolds number than in the creeping flow
region, and the Recr values delimiting the creeping flow region can be estimated for the
individual inserts on the basis of relations (20) from the condition A >> B ReX.

The fact that positive deviations δi predominated for the inserts 1 and 3 in the creep-
ing flow region whereas for insert 2 they were all negative has its reason obviously in
imprecision of construction of the inserts affecting the system geometry, which is then
also reflected in the resulting values of mean deviations δ (see Table II). The higher δi

100                                                    101
Re

101

102

Dh
lch

FIG. 4
Dependence of dimensionless ratio Dh/lch on the Reynolds number Re for channels as in Fig. 2: ❍ ●
insert 1, ∆ ▲ insert 2, ❐ ■  insert 3, empty points NF, full points GNF
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values can partly be due to the fact that the flowed-through cross section with the
double screw-shaped insert does not form a simply continuous area, which is contrary
to the requirement for application of Eq. (6) to calculation of pressure drop1 with regard
to the presumption of agreement of distribution of stress during flow of NF and GNF.
The maximum value of relative deviation δi was –14.9% here (insert No. 2, Re = 3.3).

The flow of GNF through channels depicted in Figs 1 and 5 was also studied in ref.5.
The insert represented in Fig. 1 has a form of continuous screw surface, whereas the
insert represented in Fig. 5 used for static mixers is composed of elements having
shapes of screw surface (elements of Kenics type). The dextrorotatory and laevorota-
tory elements are installed alternately into the tube and the edges of neighbouring ele-
ments form an angle of 90°.

Both the inserts were characterized by the value of simplex of geometrical similarity
s/D = 0.095, where s is thickness of the insert stripe. The experimental results with NF
and GNF in the creeping flow region at the flow index values of 0.5 ≤ n ≤ 1 led the
authors5 to derive the criterion dependences (21) and (22) for the inserts represented in
Figs 1 and 5, respectively,

∆pD(n + 1)/(KLun) = [168.10 + 201.23(D/Le)]n1.95 (21)

∆pD(n + 1)/(KLun) = [187.60 + 196.84(D/Le)]n1.80  , (22)

where Le is the length of insert element.
In accordance with the authors5, the value of flowed-through cross section, whose

geometry is represented in Figs 1 and 5, was calculated by relation (23), and the wetted
perimeter of channel by relation (24).

Le

øD

s

FIG. 5
Channel geometry of circular cross section with interrupted screw-shaped insert
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Sc ≡ Sε = πD2/4 − sD (23)

O = πD + 2D − 2s (24)

Hence, for the value of simplex of geometrical similarity s/D = 0.095 we get, using
the relation (4a), the value Ω = 0.354. In this context it must be noted that the relations
(23) and (24) are not valid with insert represented in Fig. 5 for the cross sections at the
contact points of individual elements: here the part of cross section assumed by the
insert is almost double as compared with other cross sections, which is reflected not
only in the local value of Ω characteristic but also in the value of mean velocity uch.
Hence, the insert represented in Fig. 5 strictly fulfills neither the requirement of con-
stant value of flowed-through cross section nor that of wetted perimeter of channel.

The values of Dh/lch quantity were calculated for the individual values of insert char-
acteristics D/Le given in Tables III and IV using the relation (5) and the relations (21)
and (22) valid for NF (n = 1). The Dh/lch values obtained are presented in Tables III and IV,
too. Furthermore, Eq. (6) was used to calculate the values of pressure drop ∆pcalc for the
minimum value of flow index n = 0.5. The ∆pcalc values were then compared with the
corresponding ∆p values calculated from Eqs (21) and (22). The deviations found, δ
and δi, are also given in Table III and IV.

For the insert represented in Fig. 1 in the creeping flow region (Dh/lch = const.), like
for channels without insert1, the absolute values of δi deviations from experimental
values of pressure drop are higher than the deviation values from the pressure drops
determined numerically; the maximum magnitude of value of relative deviation δi = 7.0%

TABLE III
Characteristics and comparison of own treatment with relation5 for continuous screw-shaped insert
(Fig. 1) and the flow index value n = 0.5

D/Le Dh/lch δi, %

0.212 6.31 –7.0

0.260 6.45 –6.0

0.339 6.68 –4.3

0.439 6.96 –2.3

δ = 5.2  
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can, nevertheless, be considered satisfactory. As for the insert represented in Fig. 5, the
periodical narrowing of cross section at the contact points of insert elements makes
itself felt in an increase in pressure drop as compared with that of insert represented in
Fig. 1, which is documented by results of Table IV. Here the deviations δi are positive
but their magnitude is also acceptable.

A special group of channels with insert is represented by such channels in which the
flowing around insert is only connected with the friction component of resistance. Their
simplest representative is a channel of tube-in-tube type with annular cross section. The
annulus geometry can be characterized by the ratio k = d/D, where d is the inner and D
the outer diameters of the annulus.

However, even here it must be considered that the flowed-through cross section in
the form of annulus does not form a simply continuous area according to the presump-
tion. Hence it can be expected, like with the channel with double screw-shaped insert,
that the ∆pcalc values determined by the procedure suggested using Eq. (6) with the Ω
value given by Eq. (4a) can be loaded with larger errors than those in the other cases.

Comparison of values of pressure drop ∆pcalc calculated from Eq. (6) and the charac-
teristic Ω given by Eq. (4a) with the ∆p values6 from numerical treatment for the flow
of power-law fluid through a channel with annular cross section are given in Table V
for selected values of flow index 0.1 ≤ n ≤ 1. The Dh/lch values necessary for calculation
∆pcalc were determined from the relation

Dh/lch = (32/{(3 − Ω)[1 + k2 − (1 − k2)/ln k−1] } )1/2 (25)

obtained by comparing Eq. (5) with analytical solution7 of flow of NF through annulus.
A limit case of cross section of the annulus shape, which is considered a doubly

continuous area, is infinite planar slot (k → 1) with the value of characteristic Ω = 0.
Equations (5) and (6) are exactly valid for the planar slot.

TABLE IV
Characteristics and comparison of our treatment with relation5 for interrupted screw-shaped insert
(Fig. 5) and the flow index value n = 0.5

D/Le Dh/lch δi, %

0.199 5.95 4.9

0.247 6.68 5.9

0.330 6.91 7.7

0.495 7.34 11.0 

δ = 7.7  

1488 Dolejs, Dolecek, Machac, Siska:

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



It is interesting to find that the prediction of pressure drop ∆pcalc according to Eq. (6)
with constant value of the characteristic Ω = 0 and the thereto corresponding Dh/lch

value (Eq. (25)) provides more precise results in a broad range of 0.01 ≤ k ≤ 1, as
compared with the previous procedure.

This is obvious from Table V summarizing the δi values for both calculation proce-
dures considered. Even at a very low value of the ratio k = 0.01, the relative deviation
does not exceed 4.7% for Ω = 0, and at k ≥ 0.2 the values of deviations δi are below 1%.

CONCLUSION

A procedure has been suggested for approximate calculation of pressure drop in lami-
nar flow of GNF through direct channels with inserts both in the creeping flow region
and in the region of significant inertial forces.

For this purpose, presuming an agreement between distribution of stress during flow
of NF and GNF characterized by the same value of ∆p/L ratio, the validity range has

TABLE V
Relative deviations δi of numerical calculation of pressure drop of channel of annular cross section6

from the values calculated from Eq. (6)

k n Ω δi, % Ω δi, %

0.01 1   0.980 0.0 0 0.0

0.5 –8.5 –2.2 

0.25 –10.6  0.4

0.1 –10.6  4.7

0.1 1   8.818 0.0 0 0.0

0.5 –6.2 –1.2 

0.25 –9.3 –0.7 

0.1 –10.9  1.0

0.2 1   0.667 0.0 0 0.0

0.5 –4.6 –0.7 

0.25 –7.3 –0.5 

0.1 –9.0 0.4

0.3 1   0.538 0.0 0 0.0

0.5 –3.3 –0.4 

0.25 –5.6 –0.3 

0.1 –7.2 0.2
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been extended of the Rabinowitsch–Mooney type equation which was suggested earlier
for the purpose of calculation of pressure drop in channels without insert.

The applicability of the procedure suggested has been verified for a continuous
screw-shaped insert, the insert composed of screw-shaped elements (Kenics type),
double screw-shaped insert, and for the tube-in-tube geometry.

It has been documented that the given method of calculation of pressure drop agrees
well with results of both numerical treatment and experiment for all four types of in-
serts studied.

SYMBOLS

A, B coefficients in Eq. (20)
D tube diameter, m
D
.

deformation rate, s–1

Dh hydraulic diameter of channel, m
D
.

w consistency variable, Eq. (1), s–1

d diameter of inner tube
d1 outer diameter of inner screw stripe and inner diameter of outer screw stripe in channel

with double screw-shaped insert, m
h width of slot, m
h1 height of inner screw stripe in channel with double screw-shaped insert, m
h2 height of outer screw stripe in channel with double screw-shaped insert, m
K parameter of power-law model, Pa sn

k ratio of diameters of inner and outer tubes
L channel length, m
Le length of insert element, m
lch characteristic linear dimension of system, m
N number of values compared
n parameter of power-law model
O channel perimeter, m
∆p pressure drop, Pa
rh = D/4 hydraulic radius of tube, m
rh = h/2 hydraulic radius of slot, m
rp cross-sectional radius, m
S cross section of channel without insert, m2

Sc free cross section of channel with insert, m2

s thickness of insert, m
uch characteristic rate of system, Eq. (7), m s–1

V volume of channel without insert of finite length, m3

V
.

volume flow rate, m3 s–1

Vc free volume of channel with insert of finite length, m3

X, Y coefficients in Eq. (20)
Π simplex of geometrical similarity
Ω shape characteristic of channel
δ mean deviation
δi relative deviation
ε insert porosity
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µ dynamic viscosity, Pa s
ρ density of fluid, kg m–3

τ shear stress, Pa
τw consistency variable, Eq. (2), Pa
ψ ratio of shape and frictional resistances of insert
ReM Reynolds number, Eqs (12) and (13)
Re Reynolds number, Eqs (14) and (15)

Indexes
calc calculated by the method suggested in this paper
cr critical
max maximum
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